

1

Analyzing Malware & Malicious Content

By: magikh0e - magikh0e@ihtb.org

Http://magikh0e.ihtb.org/

Some info may be incomplete, this paper is draft only.

Last Edit: 12-24-2009

mailto:magikh0e@ihtb.org
http://magikh0e.ihtb.org/

2

 Hacker’s do it with all sorts of characters…

 www.IHackedThisBox.com ⓒ2009

Table of Contents
Overview ... 4

Summary ... 4

Why Analyze Malware anyways….? .. 4

References .. 5

Creating Safe Malware Analysis Environments .. 6

Physical VS Virtual Environments ... 6

Building the Environment ... 7

Physical Machines ... 8

Virtual Machines ... 8

Organizing the Malware Collection – Keeping things tidy .. 9

Analyzing Malware – The first steps... .. 10

Static VS Dynamic Analysis.. 10

Static Analysis.. 10

Dynamic Analysis .. 10

Fingerprinting Malware Binaries ... 11

Gathering Strings from binaries .. 11

Automating the process .. 12

Identifying Known Malware .. 13

Online Virus scanning .. 13

Known Malware .. 13

Unknown Malware .. 13

Unknown Malware, Packers and Cryptors… oh my! ... 14

Manual Un-Packing Malware .. 16

Unpacking a binary quick and dirty ... 16

Unpacking a binary butcher style ... 16

Disassembling – (static analysis) ... 17

Common x86 Registers and Uses .. 17

Picking a good disassembler ... 17

http://www.ihackedthisbox.com/

3

IDA Pro .. 17

IDA Pro Interface ... 19

IDA Pro Tutorials ... 20

IDA Pro Shortcuts .. 21

Debugging and Debuggers – (dynamic analysis)... 22

OllyDBG ... 22

OllyDBG Shortcuts ... 23

Defeating Malware Defenses .. 24

OllyDBG undercover.. 24

IDA Stealth .. 24

Detecting Virtualized Environments ... 24

VMWare .. 24

Wine .. 25

XEN .. 26

VirtualBox .. 26

Code Examples .. 27

Special Thanks too everyone I bugged in the process of writing this!

“Gr@ve_r0se, Neize aka Orly, Skiffy, Mannibal, Redsand... darpa hax0rs”

4

Overview
Malware, short for malicious software, is a piece of software that’s sole purpose and design is to

infiltrate or cause damage to a computer system without the owner’s well informed consent. In the

information security world we hear this term or expression all the time used by professionals to describe

a variety of hostile, intrusive or other wise annoying code running on a system.

It is not uncommon to hear people still using the term “computer virus” as a catch-all sort of phrase to

include all types of malware, without neglecting a real computer virus that would fall within. Having said

that, Malware can be used to classify computer viruses, worms, Trojan horses, majority of root kits,

spyware, suspicious adware, along with any other un-wanted software

Just because a piece of software may be buggy or defective will not be enough to be classified as

malware. [1] Some findings by Symantec published in 2008 suggest that “the release rate of malicious

code and other unwanted programs may be exceeding that of legitimate software applications.” If you

think this is something to worry about, according to F-Secure, [2] “As much malware [was] produced in

2007 alone, than has been created in the previous 20 years all together”

It is a safe bet to say, if you have ever browsed the internet, sent & received some emails or browsed to

your favorite website. You have ultimately encountered a piece of malware once or twice.

Summary
Analyzing malware & malicious content aim’s to be a paper covering the topics of analyzing malicious

content and malware infested executables. This paper will take the reader through the very beginning

steps of safely acquiring some malware specimen, and analyzing & disassembling the malware in a safe,

controlled environment. Some basic knowledge of ASM, C will be assumed, as well as familiarity with

tools such as OllyDBG, IDA Pro, Wire Shark and so on…

Why Analyze Malware anyways….?
In short, there is a multitude of different reasons we would analyze malware, see below to name just a

few:

 Discovering signs of an intrusion or attempt there of.

 Assess the damages after an intrusion has been detected.

 Identifying vulnerabilities or ways to detect and identify new malware for developing techniques

at preventing future infections.

 Answering questions…?

5

References

[1] http://eval.symantec.com/mktginfo/enterprise/white_papers/b-

whitepaper_exec_summary_internet_security_threat_report_xiii_04-2008.en-us.pdf

[2] http://www.f-secure.com/f-secure/pressroom/news/fs_news_20071204_1_eng.html

http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_exec_summary_internet_security_threat_report_xiii_04-2008.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_exec_summary_internet_security_threat_report_xiii_04-2008.en-us.pdf
http://www.f-secure.com/f-secure/pressroom/news/fs_news_20071204_1_eng.html

6

Creating Safe Malware Analysis Environments
If you can recall in the story “The Three Little Pigs”, they all had their own ideas of building a safe &

secure shelter. When the first two failed, luckily the 3rd one had built an armored fortress house made of

brick. When building our malware analysis environment, we want to make sure their will be no mistakes

and we have a proper armored fortress the first time.

At the very least when building a malware analysis environment, we want to be 100% for sure that these

system(s) do not have any access to any live production systems or the Internet. It is a good idea to

always start out with a clean slate using a fresh install of the OS of your choice for analysis. I prefer to

keep around several pristine installs of various operating systems and versions for analysis on a live

system. When you start from a pristine state it becomes much easier to track and monitor changes done

to the system after running a piece of malware for analyzing.

Physical VS Virtual Environments
You will have several options when creating a malware analysis environment. If you have the hardware

lying around you can always build your lab using bare metal machines. I prefer to use virtualized

Operating systems for several reasons that will be touched on below:

 Faster Restore times to a pristine state using non-persistent images

Non-persistent images support: VMware, Xen, Parallels

 No need for extra hardware lying around

 Switching between Operating Systems much faster

 The list could go on… which is going out of scope for this paper ;)

With anything good, there is always some down falls or faults that lie hidden within the details.

I have always said if you wish to see the most creativity in computer security/programming,

check and see what the malware authors are up too. At the end of the day their creations sole

purpose is to run undetected and do its dirty deeds in the background. These guy’s are savvy to

debugging and disassembling as well, I have seen more than one piece of malware completely

disable it’s self when it is detected to be running within a virtual environment. This leads too a

manual intervention using our good friends OllyDBG, IDA Pro along with others we will dive into

shortly.

7

Building the Environment

If you are using real machines or virtual machines, the setup logically is pretty much the same. We will

need at least one machine to serve the purpose of the victim. On this machine we will run the operating

system of choice on which we wish to infect and perform a live analysis on a piece of malware.

The second machine will be the monitoring machine. Here we will only ever store and hash malware

specimen. Be sure to NEVER run, load and or debug any malware on this machine. Everything must be

READ-ONLY!

The only thing to really change is in the networking if you are using real machines or virtual machines.

If you are using real machines and not familiar with sniffing on a switched network OR the setting up of

SPAN ports on a switch. I suggest you use a simple hub, as all packets will be replicated to each port

allowing the easy capture of traffic from the victim machine. Be sure to make sure your monitoring

machine is fully patched, some malware is weaponized.

Meaning they have the ability to scan for and infect other host on the network. I have seen malware in

the wild that would run their own DHCP server handing out valid addresses but a poisoned DNS server

under an attacker’s control.

There is a catch 22 involved here... It is a good idea to allow the malware to interact with its server out

in the wild & scary internet for complete inspection, though doing so could very well could put you in

the middle of a WW3 battle with the malware bot herders. Ever heard that saying about not meddling in

the affairs of a system admin? Trying angering a bot herder…. ;D

8

Physical Machines

 Minimal 2 machines.

(1 machine for running malware) (1 machine for running network analysis)

 Norton Ghost or some other imaging software

 Hub – Switch (networking) hub is probably the best choice, makes the sniffing of traffic much

easier ;)

Pros

 Essentially every piece of malware/virus will
operate*

 Tighter control to ensure the malware does
not escape the environment into the host.

Cons

 Can be costly on hardware.

 Requires more physical space for hardware.

 Takes longer to restore pristine image

Virtual Machines

 Minimal 1 Real system

 Virtualization software:

VMware [Workstation - Player, Server (free)]

XEN (free)

QEMU (free)

Microsoft Virtual PC (free)

Pros

 Faster setup times

 Non-persistent image support

Cons

 Virtualization detection from malware

9

Organizing the Malware Collection – Keeping things tidy

once your collection starts to grow, if it has not already... Things will tend to get pretty messy. It is a

good idea to keep your collection organized from the beginning, as this will greatly pay off in the end.

I have found a scheme online for managing viruses and modified it of sorts for keeping my collections

clean and organized. Reverse engineering of malware can be a very time consuming process and require

lots of notes and logging of details. Using the methods and naming convention below, this will allow for

an easier to manage collection for management of the binaries as well as data and notes pertaining to

each file in the collection.

I like to keep my collection organized by starting out with the family name of the malware. Under each

family name I will then create sub directories for each variant that is classified to be within a specific

family of malware.

Example:

Backdoor.Win32.Kbot/Backdoor.Win32.Kbot.al/notes.txt

Backdoor.Win32.Kbot/Backdoor.Win32.Kbot.al/file_exe

Backdoor.Win32.Kbot/Backdoor.Win32.Kbot.al/unpacked/file_exe

Backdoor.Win32.Kbot/Backdoor.Win32.Kbot.al/unpacked/file_exe.md5

Backdoor.Win32.Kbot/Backdoor.Win32.Kbot.al/unpacked/file_exe.sha1

Backdoor.Win32.Kbot/Backdoor.Win32.Kbot.al/unpacked/file_exe.strings

Backdoor.Win32.Kbot/Backdoor.Win32.Kbot.al/file_exe.md5

Backdoor.Win32.Kbot/Backdoor.Win32.Kbot.al/file_exe.sha1

Backdoor.Win32.Kbot/Backdoor.Win32.Kbot.al/file_exe.strings

*always add some extra character on the end of malware extension to

prevent accidental execution.

 Yes it does happen... Yes, I have done it before... =)

10

Analyzing Malware – The first steps...
Now that we have a safe environment built for analyzing some malware, and assuming that you have

some malware collected already. Let’s begin the steps of analyzing to see what we can learn about its

mysterious ways. We first choose our initial method of attack at analyzing the malware.

Static VS Dynamic Analysis
When analyzing malware there is generally 2 approaches you can take. In most cases both may be

required, where as in others one may be enough.

Static Analysis

Static analysis will always be your safest bet when analyzing malware.

This is mainly due to the reason that ALL of the analysis is done as read-only

per se. No actual executing of the malware is ever performed in a live environment.

Performing a static analysis you will not need to go to such great lengths as compared

to a dynamic analysis of malware on a live system.

Dynamic Analysis

Dynamic analysis can get a bit more interesting for you as a researcher as well as exposing

yourself or others to further risk of attack. If you must allow your victim machine access to

the net during analysis for capturing traffic to the mother ship, I would suggest making use

of the TOR network. The bot herder may notice you tampering around and turn the BOT

net around on you. This never equals good times...

11

Fingerprinting Malware Binaries
The very first step before analyzing any piece of malware is the renaming & hashing of the original

binary. The process of renaming the malware is a good habit to get into this will prevent the accidental

execution of the malware. Assuming we have a file file.exe we are attempting to analyze.

 Original: file.exe New: file_exe

For the purpose of hashing we will use tools like MD5, SHA1. Hashing a file using the utilities is fairly

simple to do. Hashing of the file is pretty essential when you are analyzing Malware. This will ensure the

malware file its self does not change during analysis.

To keep things organized, I store the file hash in a file with the following naming convention:

File_ext.hashType Example: file_exe.md5

We first hash the file with the following process.

Magikh0e@ihtb.org:~$ md5sum file.exe > file_exe.md5

d41d8cd98f00b204e9800998ecf8427e file.exe

Magikh0e@ihtb.org:~$ sha1sum file.exe > file_exe.sha1

da39a3ee5e6b4b0d3255bfef95601890afd80709 file.exe

Gathering Strings from binaries

After hashing the binary, I always tend to search for some low hanging fruit. Using the strings command

is a perfect way to grab all of the human readable/printable characters from the file and store them

away in a separate file for later analysis.

Gathering strings from a binary can be performed in several different ways. Linux systems with GNU

tools come with a utility built in which can be accessed using the strings command.

Note: In some cases no strings will be returned, this usually means the file has been packed.

Magikh0e@ihtb.org:~$ strings file_exe > file_exe.strings

/lib/ld-linux.so.2

__gmon_start__

libc.so.6

_IO_stdin_used…..

12

Automating the process

I have hacked up a quick Perl script to auto-mated the process of collecting the MD5 and SHA1 hash of

the binary, then gather printable characters found within the binary and log them to a file. The purpose

of the script is to give you an idea at creating some of your own automated way’s of managing/analyzing

your collection. If you come up with anything you think would be useful, I would love to check it out…

#!/usr/bin/perl

Script for collecting hashes and strings from a malware binary.

use strict;

use warnings;

my $MD5 = '/usr/bin/md5sum';

my $SHA1 = '/usr/bin/sha1sum';

my $STRINGS = '/usr/bin/strings';

my $mw_file;

$mw_file = $ARGV[0];

if (!$mw_file) { print "Malware File: ";

chomp($mw_file = <STDIN>); }

if (-e $mw_file) {

system("$MD5 $mw_file > $mw_file.md5");

system("$SHA1 $mw_file > $mw_file.sha1");

system("$STRINGS $mw_file > $mw_file.strings");

} else { die "File: $mw_file - does not exist: $0"; }

13

Identifying Known Malware

I’ve always hated to re-invent the wheel or see someone else suffer trying. Having said that, now we

have renamed and hashed our malware specimen. It is time to pull out your favorite anti-virus scanner.

Start scanning the binary you are analyzing using different AV scanners. We do this for several purposes.

One the file may have already been identified and documented, voiding the need for manual analysis.

There is a fair amount of good online resources for this purpose and help considerably when speeding

things up. One of the best sites I know of for this purpose is http://virusscan.jotti.org/. Using this site

you will have the ability to submit a file and then have it scanned using 21 of the leading anti virus

vendors. I tend to live by the motto of security being a process, not a product. Make sure to use more

than one scanner.

Online Virus scanning

http://virusscan.jotti.org

http://www.virustotal.com

Known Malware

If you are lucky, the AV will be able to detect the malware you are analyzing. Upon detection the

chances are very high of someone on the internet documenting every detail about the malware will

already be posted. Google is your friend.

Unknown Malware

Now you must have a binary that you have suspicions of, but none of the current anti-virus scanner

definitions are picking up any malware infection within the binary it’s self. Now is where things will get

tricky, interesting, frustrating and mentally anguishing all at the same time. Have no fear; there is a vast

variety of tools to help you accomplish the task of debugging, disassembling and analyzing binaries of

unknown origins and or purposes.

http://virusscan.jotti.org/
http://virusscan.jotti.org/
http://www.virustotal.com/

14

Unknown Malware, Packers and Cryptors… oh my!

The first steps towards identifying an unknown piece of malware is too first analyze the binary with a

fine tooth comb. Chances are the binary has been packed with some sort of packer. If luck is on your

side the packer being used will already have been documented with details on the unpacking of the

executable.

Now you are most likely wondering just how to identify what packer is being used. For this purpose we

will be using a utility called PEiD by: Jibz, Qwerton, snaker, xineohP. At the time of this writing the latest

version available is 0.95.

Packed Malware

Malware authors often use packer software in order to evade detection and to make sure the malware

has a smaller footprint so it can squeeze in places and remain hidden for as long as possible. Packers can

be quite tricky in identifying and more importantly, un-packing. A tool as the one below is used in order

to attempt identifying which packer a binary is currently using. Once identified hopefully finding the

packer or resources for manual unpacking will be easier to find.

15

PEiD

PEiD detects most common packers, cryptors and compilers for PE files. It can currently detect more

than 600 different signatures in PE files.

If you are lucky your job will be made tremendously easier and there will not be a packer being used on

the executable; however that would be in the perfect world. Most malware authors do not like people

poking around in and with their code. So they will go to great lengths with packers, cryptors and other

obfuscation techniques they manage to conjure up in order to keep the prying eyes away from the prize.

So, you ran into a packed file huh?

Once you have identified that you are dealing with a packed piece of malware, hopefully PEiD will be

able to identify the packer currently being used. If so, this will tremendously speed up the efforts at

reverse engineering the piece of malware successfully. Once you have determined the name of the

packer, we rush away to several places on the web with a vast resource of information on specific

packers and how to unpack them. In some cases you will be unable to successfully unpack a binary. In

these cases your only option is to perform dynamic analysis while the malware is running. More on this

later…

16

Manual Un-Packing Malware
When attempting to unpack binaries by hand manually we will be on the hunt for the OEP entry.

Sounds easy enough, yeah? ;) Olly and IDA both have some plugins to help in the finding of the OEP,

other times this is a pain staking manual process. When attempting to locate the OEP, keep an eye out

for the following:

 JMPs or CALLs to EAX.

This may point you to the OEP, this JMP or CALL could possibly be preceded by POPA or POPAD.

 Tricky jumps via SEH, CALL, RET etc…

 If the packer you are dealing with uses SEH, You can anticipate OEP by tracking stack areas used

to store the packers' handlers.

 Breaking on the un-packers calls to LoadLibraryA or GetProcAddress may help in getting closer

to OEP.

 When unpacking in OllyDbg, try SFX (bytewise) and OllyDump's "Find OEP by Section Hop".

Unpacking a binary quick and dirty

Infect the victim system and dump the memory using LordPE or OllyDump.

Unpacking a binary butcher style

Find the OEP ‘original entry point’ after the un-packer has been executed.

Packer Analysis Database: http://www.openrce.org/reference_library/packer_database

MW-Blog: http://www.teamfurry.com/wordpress/

The above sites are some pretty good resources that I have found on the net with information related to

packers. The MW-Blog seems to have not been updated for awhile, at the time of this writing the last

update was on June 15th 2009. None the less still contains some good information on un-packing

packers. Most of the blog postings seem to use IDA Pro for the actual unpacking process which leads us

into the next section…

http://www.openrce.org/reference_library/packer_database
http://www.teamfurry.com/wordpress/

17

Disassembling – (static analysis)
The art of disassembly is another paper on it’s own to cover in detail and give it due justice.

However that is a bit out of scope for this paper, so we will briefly cover it and some tools

 you can use along with tips to help you out along the way.

Almost all of the software you see available today is written using a high level language like C, C++, and

Delphi etc... Same goes for the malware... These languages generally speaking, are what are known as a

compiled language that will turn the high-level code into low-level code that a computer can

understand. This is what we know as Assembly. Not to be confused with de-compilers, Disassemblers

will take a binary file that could have been written in any available compiled language, and disassemble

the binary into assembly source code. While a de-compiler takes a binary file generated by a specific

compiler and attempts to reverse the binary back into the high-level code it was created from originally.

Common x86 Registers and Uses

EAX Addition, multiplication, function results

ECX Counter

EBP Base for referencing function arguments (EBP+value) and local variables (EBP-value)

ESP Points to the current "top" of the stack; changes via PUSH, POP, and others

EIP Points to the next instruction

EFLAGS Contains flags that store outcomes of computations (e.g., Zero and Carry flags)

Picking a good disassembler

A good disassembler needs to have the ability to accurately distinguish between data and code of a

binary. While a good de-compiler will need to do this and have the ability to understand what code

construct in the original high-level language generated the code to begin with.

IDA Pro
For static analysis my personal choice in preference is IDA Pro, why IDA Pro you may ask?

Well IDA Pro is nor a de-compiler or a disassembler... Think of IDA as the love child if W32dasm and

OllyDBG had a baby… IDA stands for the interactive disassemble, and it can withstand living up to its

name. IDA also has loads of features that you could classify it as a de-compiler due to a feature known as

FLIRT.

If you have ever dabbled in C you will know that every program ends up using some functions that are

supplied by the compiler it’s self, or as a part of the Win32 API as an example. Take a look at a printf()

statement, any C program that makes a call to printf will have the same piece of code inside them.

During compile time the process of the compiler will in-turn link the code for the function from its

included library. If it is not so obvious yet, this will allow for the disassemble to recognize the code

patterns of specific functions then add the ability of mapping a name to it that is somewhat meaningful.

18

If you ever dabbled in reverse engineering you can see how this will become useful, ever spent an hour

tracing through a function only to find out later that was only that specific compilers variant of fseek().

To me this is what sets IDA aside from others with the FLIRT abilities. The FLIRT libraries come with a

huge set of signatures for specific functions from the various available compilers on the internet. Best of

all they do not stop at C alone, there is also signatures for compilers like Pascal, Delphi, VB and more…

To learn more about FLIRT, check out the IDA page in resources. FLIRT is just one of the many great

things about IDA, there is a vast resource of plugins you can find online or learn how to create your own.

Loading of a file in IDA Pro…

19

IDA Pro main window after a binary has been loaded, the green circle also indicates that the IDA analysis

has been completed…

IDA Pro Interface
IDA View A - Action name: WindowOpen

Disassembly window

Exports - Action name: OpenExports

Exports Window

Imports - Action name: OpenImports

Imports Window

Names - Action name: OpenNames

Names Window

The GUI version displays a small icon for each name:

 L (dark blue) - library function F (dark blue) - regular function

 C (light blue) - instruction A (dark green) - ascii string

 D (light green) – data I (purple) - imported name

20

Functions - Action name: OpenFunctions

Functions Window

Listed for each function are:

 - function name

 - segment that contains the function

 - offset of the function within the segment

 - function length in bytes

The last column of this window has the following format:
 R - function returns to the caller

 F - far function

 L - library function

 S - static function

 B - BP based frame.

 IDA will automatically convert all frame pointer

 [BP+xxx]operands to stack variables.

 T - function has type information

 = - Frame pointer is equal to the initial stack pointer.

 In this case the frame pointer points to the bottom of the frame

 M - reserved

 S - reserved

 I - reserved

 C - reserved

 D - reserved

 V – reserved

Structures - Action name: OpenStructures

Structures Window

You can modify structure definitions here: add/rename/delete structures, add/delete/define structure
members.

Enums - Action name: OpenEnums

Enums Window

You can modify enum definitions here: add/edit/delete enums, add/edit/delete enum members (i.e.
user-defined symbolic constants)

IDA Pro Tutorials

http://www.hex-rays.com/idapro/idasupport.htm

http://ebook-net.blogspot.com/2008/05/reverse-engineering-with-ida-pro.html

http://www.woodmann.com/crackz/Tutorials/IdaTut.zip

http://www.hex-rays.com/idapro/debugger/gdb_qemu.pdf

http://www.hex-rays.com/idapro/debugger/gdb_vmware_linux.pdf

http://www.hex-rays.com/idapro/debugger/gdb_vmware_winkernel.pdf

http://www.hex-rays.com/idapro/idasupport.htm
http://ebook-net.blogspot.com/2008/05/reverse-engineering-with-ida-pro.html
http://www.woodmann.com/crackz/Tutorials/IdaTut.zip
http://www.hex-rays.com/idapro/debugger/gdb_qemu.pdf
http://www.hex-rays.com/idapro/debugger/gdb_vmware_linux.pdf
http://www.hex-rays.com/idapro/debugger/gdb_vmware_winkernel.pdf

21

IDA Pro Shortcuts

Here we will list some handy shortcuts…

Text search Alt+T

Show strings window Shift+F12

Show operand as hex value Q

Insert comment :

Follow jump or call in view Enter

Return to previous view Esc

Go to next view Ctrl+Enter

Show names window Shift+F4

Display function's flow chart F12

Display graph of function calls Ctrl+F12

Go to program's entry point Ctrl+E

Go to specific address G

Rename a variable or function N

Show listing of names Ctrl+L

Display listing of segments Ctrl+S

Show cross-references to selected function

 Select function name » Ctrl+X

Show stack of current function Ctrl+K

22

Debugging and Debuggers – (dynamic analysis)
Debugging and debuggers themselves play another important part in analyzing malware. These are

typically used once you get to the dynamic analysis portion when analyzing a new piece of malware in

your collection.

When it comes to debuggers I am torn between two like Michael Jordan and baseball?? Good you are

still paying attention. ;)

Anyways, the two debuggers of my preference for analyzing malware is Immunity DBG and Olly DBG.

They both are very good and what they do with some advantages and disadvantages over one another.

Which we will not go into here… For sole purpose of simplicity and more information online, we will

mainly be focusing on Olly DBG for this paper.

OllyDBG

OllyDBG main window…

Note: I did not forget about gdb, we will be using some linux tools soon for performing some analysis.

23

OllyDBG Shortcuts

Here we will list some handy shortcuts…

Step into instruction F7

Step over instruction F8

Execute till next breakpoint F9

Execute till next return Ctrl+F9

Show previous executed instruction -

Show next executed instruction +

Return to previous view *

Show memory map Alt+M

Follow expression in view Ctrl+G

Insert comment ;

Follow jump or call in view Enter

Show listing of names Ctrl+N

New binary search Ctrl+B

Next binary search result Ctrl+L

Show listing of software breakpoints Alt+B

Assemble instruction in place of selected one Select instruction » Spacebar

Edit data in memory or instruction opcode Select data or instruction » Ctrl+E

Show SEH chain View » SEH chain

Show patches Ctrl+P

24

Defeating Malware Defenses
Most malware nowadays implement some sort of defense aimed at defeating analysis of the binary or

any sort of reverse engineering in order to evade detection. Along with the evasion of detection, packing

techniques are also used to make the malware smaller and easier to cram in places. As we have

mentioned earlier on that some types of malware have the ability to detect if they are running within an

emulated environment or not. Malware gets trickier and more obfuscated by the day; the creators are

even more insane with new creations...

They also have the ability to detect well known debuggers running on the host system and/or

implement obfuscation techniques within the code its self. I will include a tutorial in the references for a

great read on anti-debugging tips, tricks and other techniques used.

OllyDBG undercover

Conceal OllyDbg using HideOD and OllyAdvanced.

http://www.openrce.org/downloads/details/238/Hide_Debugger

http://www.openrce.org/downloads/details/241/Olly_Advanced

IDA Stealth
IDA Stealth is a plugin which aims to hide the IDA debugger from most common anti-debugging

techniques. The plugin is composed of two files, the plugin itself and a dll which is injected into the

debuggee as soon as the debugger attaches to the process. The injected dll actually implements most of

the stealth techniques either by hooking system calls or by patching some flags in the remote process.

http://newgre.net/idastealth

Detecting Virtualized Environments
As we have discussed earlier on, a lot of malware that you see nowadays have the ability to detect that

they are currently running within a virtual environment. Below we will look into the way’s a virtual

environment could be detected.

VMWare

VMWare is a bit easier to detect depending on your configuration. For the main part vmware-tools is

usually always installed on the OS anyways. There is also a small C routine by the name of Jerry.c that

works well for the most part, though does have some quirks. Jerry.c uses a simple communication

channel that VMware has left open. As mentioned depending on the configuration, the administrator

can change this channel. Chances are high of the OS being designed to act as a honey pot if this channel

has been changed anyways…

http://www.openrce.org/downloads/details/238/Hide_Debugger
http://www.openrce.org/downloads/details/241/Olly_Advanced
http://newgre.net/idastealth

25

You can think of Jerry.c is a first generation of it’s kind. As with anything good, usually better

improvements follow. This is where Scoopy comes into play, written by the same author as Jerry.c.

Scoopy is far more complex in the way it works as compared to Jerry.c. Scoopy inspects how the system

is actually virtualized using the SIDT CPU instruction instead of a communication channel, as Jerry.c

does. Another interesting write up on detecting virtualized operating systems if the red pill paper.

Jerry.c - http://www.trapkit.de/tools/index.html - Outdated now, see ScoopyNG.

Scoopy - http://www.trapkit.de/tools/index.html

Red Pill Paper: http://invisiblethings.org/papers/redpill.html

VMWare can also be detected via the MAC address being used. VMware by default will use a MAC

address starting with 00-05-69. Though keep in mind, a MAC address can be changed fairly easy.

Wine

For wine we also have several options in order to detect being run within the environment. When you

are using wine they have created a special dll entry to NTDLL.DLL called wine_nt_to_unix_file_name.

When you are using LoadLibrary and getProcAddress, you can determine if you are under a wine

environment or not by checking for the presence of the new entry into NTDLL.DLL. Jerry.c also works

under wine, just will state that vmware has been detected.

Registry Keys

Wine can also be detected by opening the following registry keys:

HKLM\Software\Wine or HKCU\Software\Wine

Last but not least. Open up any critical Windows file and locate the OEP, when running under a wine

environment the function will disassemble to the following instructions:

.text:10001000 public start

.text:10001000 start proc near

.text:10001000 mov eax, 1

.text:10001005 retn 4

.text:10001005 start endp

For the quick and dirty, Just search for the following binary string B8 01 00 00 00 C2 04 00 at

.text:10001000 ;D

http://www.trapkit.de/tools/index.html
http://www.trapkit.de/tools/index.html
http://invisiblethings.org/papers/redpill.html

26

XEN

Xen can be detected fairly reliable using the WMI interface and querying the BIOS manufacturer

information. Xen can also be detected via the MAC address being used. Xen host will use a MAC

address starting with 00-16-3E

VirtualBox

Virtual Box MACs all start with 08:00:27

27

Code Examples

Detecting VMware:

procedure TForm1.btnJerryClick(Sender: TObject);

var a, b:cardinal;

begin

a:=0;

try

 asm

 push eax

 push ebx

 push ecx

 push edx

 mov eax, 'VMXh'

 mov ecx, 0Ah

 mov dx, 'VX'

 in eax, dx

 mov a, ebx

 mov b, ecx

 pop edx

 pop ecx

 pop ebx

 pop eax

 end;

except on E:Exception do ShowMessage(E.Message);

end;

if a=$564D5868 then

 begin

 ShowMessage('In VMware');

 case b of

 1 : ShowMessage('Express');

 2 : ShowMessage('ESX');

 3 : ShowMessage('GSX');

 4 : ShowMessage('Workstation');

 else ShowMessage('Unknown version')

 end;

 end

else

 ShowMessage('Native system');

end;

28

Detecting Wine:

function TForm1.IsRunningWine: boolean;

var hnd:THandle;

 wine_get_version: function : pchar; {$IFDEF Win32} stdcall;

{$ENDIF}

 wine_unix2fn: procedure (p1:pointer; p2:pointer); {$IFDEF Win32}

stdcall; {$ENDIF}

begin

result:=false;

hnd:=LoadLibrary('ntdll.dll');

if hnd>32 then

 begin

 wine_get_version:= GetProcAddress(hnd, 'wine_get_version');

 wine_unix2fn:= GetProcAddress(hnd, 'wine_nt_to_unix_file_name');

 if assigned(wine_get_version) or assigned(wine_unix2fn) then

 result:=true;

 FreeLibrary(hnd);

 end;

end;

Detecting VirtualBox:

This was written by the VirtualBox author, just detects the existence of VBoxService.exe.

function InVirtualBox:boolean;

var handle:THandle;

procinfo:ProcessEntry32;

begin

result:=false;

handle := CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS,0);

procinfo := sizeof(PROCESSENTRY32);

while(Process32Next(handle, procinfo)) do

begin

if POS("VBoxService.exe",procinfo.szExeFile)>0) then

begin

CloseHandle(handle);

result:=true;

exit;

end;

end;

CloseHandle(handle);

end;

29

Detecting Virtual PC:

function TForm1.IsRunningVirtualPC: boolean;

asm

 push ebp;

 mov ebp, esp;

 mov ecx, offset @exception_handler;

 push ebx;

 push ecx;

 push dword ptr fs:[0];

 mov dword ptr fs:[0], esp;

 mov ebx, 0; // Flag

 mov eax, 1; // VPC function number

 // call VPC

 db $0F, $3F, $07, $0B

 mov eax, dword ptr ss:[esp];

 mov dword ptr fs:[0], eax;

 add esp, 8;

 test ebx, ebx;

 setz al;

 lea esp, dword ptr ss:[ebp-4];

 mov ebx, dword ptr ss:[esp];

 mov ebp, dword ptr ss:[esp+4];

 add esp, 8;

 jmp @ret1;

@exception_handler:

 mov ecx, [esp+0Ch];

 mov dword ptr [ecx+0A4h], -1; // EBX = -1 ->; not running, ebx = 0 -

> running

 add dword ptr [ecx+0B8h], 4; // ->; skip past the call to VPC

 xor eax, eax; // exception is handled

@ret1:

end;

30

Detect Virtualized guest based on MAC address
#!/usr/bin/perl

Detect virtualized guest based on MAC address.

Do not expect this method to be very reliable at all. MAC addresses

can easily be changed. ;D

my $ifconfig = `/sbin/ifconfig -a eth0 2>&1 | /bin/grep HWaddr`;

my @info = split(/\s+/, $ifconfig);

print $info[4] . "\n";

if ($info[4] =~ /08:00:27/) { print "\nVirtualBox MAC Detected\n"; }

if ($info[4] =~ /00:16:3E/) { print "\nXen MAC Detected\n"; }

if ($info[4] =~ /00:05:69/) { print "\nVmware MAC Detected\n"; }

if ($info[4] =~ /00:0C:29/) { print "\nVmware ESX MAC Detected\n"; }

if ($info[4] =~ /00:50:56/) { print "\nVmware VC ESX MAC Detected\n";

}

